Bounded tracking controllers for the chaotic (forced) Duffing equation

نویسنده

  • J.
چکیده

This paper deals with the design of feedback controllers for a chaotic dynamical system l i e the Duffing equation. Lyapunov theory is used to show that the proposed bounded controllers achieve global convergence for any desired trajectory. Some simulation examples illustrate the presented ideas.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DIRECT ADAPTIVE FUZZY PI SLIDING MODE CONTROL OF SYSTEMS WITH UNKNOWN BUT BOUNDED DISTURBANCES

An asymptotically stable direct adaptive fuzzy PI sliding modecontroller is proposed for a class of nonlinear uncertain systems. In contrast toother existing approaches of handling disturbances, the proposed approachdoes not require this bound to be known, only requiring that it exists.Moreover, a PI control structure is used to attenuate chattering. The approachis applied to stabilize an open-...

متن کامل

Super-Twisting Control of the Duffing-Holmes Chaotic System

In this paper, a super twisting controller (STC) is designed to control the chaotic behavior of the Duffing-Holmes system in stabilization and tracking cases. Due to lack of availability of the performance evaluation of STC in controlling Duffing-Holmes system, this paper aims to test the performance of STC in controlling DuffingHolmes system. In order to achieve this control design, a modifica...

متن کامل

Nonlinear Control of Chaotic Forced Duffing and Van der Pol Oscillators

This paper discusses a novel technique and implementation to perform nonlinear control for two different forced model state oscillators and actuators. The paper starts by discussing the Duffing oscillator which features a second order non-linear differential equation describing complex motion whereas the second model is the Van der Pol oscillator with non-linear damping. A first order actuator ...

متن کامل

Nonresonant Excitation of the Forced Duffing Equation

We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...

متن کامل

Chaotic Behavior in Differential Equations Driven by a Brownian Motion

In this paper, we investigate the chaotic behavior of ordinary differential equations with a homoclinic orbit to a dissipative saddle point under an unbounded random forcing driven by a Brownian motion. We prove that, for almost all sample pathes of the Brownian motion in the classical Wiener space, the forced equation admits a topological horseshoe of infinitely many branches. This result is t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017